Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 451, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200005

RESUMO

Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.


Assuntos
Autofagia , Linfócitos T CD8-Positivos , Humanos , Animais , Camundongos , Dinoprostona , Genes Mitocondriais , Glutationa
3.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993703

RESUMO

Immune cells must adapt to different environments during the course of an immune response. We studied the adaptation of CD8 + T cells to the intestinal microenvironment and how this process shapes their residency in the gut. CD8 + T cells progressively remodel their transcriptome and surface phenotype as they acquire gut residency, and downregulate expression of mitochondrial genes. Human and mouse gut-resident CD8 + T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We found that the intestinal microenvironment is rich in prostaglandin E 2 (PGE 2 ), which drives mitochondrial depolarization in CD8 + T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE 2 sensing promotes CD8 + T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell population. Thus, a PGE 2 -autophagy-glutathione axis defines the metabolic adaptation of CD8 + T cells to the intestinal microenvironment, to ultimately influence the T cell pool.

4.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797499

RESUMO

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Assuntos
Pirimidinas , Ciclo Celular , Diferenciação Celular
5.
Nat Immunol ; 24(3): 516-530, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732424

RESUMO

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Assuntos
Fosfatos de Fosfatidilinositol , Fosfatidilinositóis , Fosfatidilinositóis/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Linfócitos T CD8-Positivos/metabolismo
6.
Cell Metab ; 35(2): 316-331.e6, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36584675

RESUMO

Apoptotic cell (AC) clearance (efferocytosis) is performed by phagocytes, such as macrophages, that inhabit harsh physiological environments. Here, we find that macrophages display enhanced efferocytosis under prolonged (chronic) physiological hypoxia, characterized by increased internalization and accelerated degradation of ACs. Transcriptional and translational analyses revealed that chronic physiological hypoxia induces two distinct but complimentary states. The first, "primed" state, consists of concomitant transcription and translation of metabolic programs in AC-naive macrophages that persist during efferocytosis. The second, "poised" state, consists of transcription, but not translation, of phagocyte function programs in AC-naive macrophages that are translated during efferocytosis. Mechanistically, macrophages efficiently flux glucose into a noncanonical pentose phosphate pathway (PPP) loop to enhance NADPH production. PPP-derived NADPH directly supports enhanced efferocytosis under physiological hypoxia by ensuring phagolysosomal maturation and redox homeostasis. Thus, macrophages residing under physiological hypoxia adopt states that support cell fitness and ensure performance of essential homeostatic functions rapidly and safely.


Assuntos
Macrófagos , Oxigênio , Humanos , Oxigênio/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Fagocitose , Hipóxia/metabolismo , Apoptose/fisiologia
7.
Nature ; 610(7932): 555-561, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171294

RESUMO

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Mitocôndrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Serina/biossíntese , Serina/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ciclo do Ácido Cítrico , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
8.
Nat Commun ; 13(1): 5174, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36055998

RESUMO

CD4+ T cells are pivotal cells playing roles in the orchestration of humoral and cytotoxic immune responses. It is known that CD4+ T cell proliferation relies on autophagy, but identification of the autophagosomal cargo involved is missing. Here we create a transgenic mouse model, to enable direct mapping of the proteinaceous content of autophagosomes in primary cells by LC3 proximity labelling. Interleukin-7 receptor-α, a cytokine receptor mostly found in naïve and memory T cells, is reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy show increased interleukin-7 receptor-α surface expression, while no defect in internalisation is observed. Mechanistically, excessive surface interleukin-7 receptor-α sequestrates the common gamma chain, impairing the interleukin-2 receptor assembly and downstream signalling crucial for T cell proliferation. This study shows that key autophagy substrates can be reliably identified in this mouse model and help mechanistically unravel autophagy's contribution to healthy physiology and disease.


Assuntos
Autofagossomos , Linfócitos T CD4-Positivos , Animais , Autofagossomos/metabolismo , Proliferação de Células , Interleucina-2/metabolismo , Interleucina-7/metabolismo , Ativação Linfocitária , Camundongos , Receptores de Interleucina-7/metabolismo
9.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216540

RESUMO

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Assuntos
Linhagem da Célula , Poliaminas/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigenoma , Histonas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ornitina Descarboxilase/metabolismo , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fatores de Transcrição/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161266

RESUMO

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Febre/imunologia , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Animais , Antineoplásicos/metabolismo , Linfócitos T CD8-Positivos/ultraestrutura , Citocinas/biossíntese , Glucose/metabolismo , Leucemia Mieloide/imunologia , Leucemia Mieloide/patologia , Leucemia Mieloide/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Modelos Biológicos , Temperatura
11.
Nat Metab ; 2(8): 703-716, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32747793

RESUMO

CD8+ effector T (TE) cell proliferation and cytokine production depends on enhanced glucose metabolism. However, circulating T cells continuously adapt to glucose fluctuations caused by diet and inter-organ metabolite exchange. Here we show that transient glucose restriction (TGR) in activated CD8+ TE cells metabolically primes effector functions and enhances tumour clearance in mice. Tumour-specific TGR CD8+ TE cells co-cultured with tumour spheroids in replete conditions display enhanced effector molecule expression, and adoptive transfer of these cells in a murine lymphoma model leads to greater numbers of immunologically functional circulating donor cells and complete tumour clearance. Mechanistically, TE cells treated with TGR undergo metabolic remodelling that, after glucose re-exposure, supports enhanced glucose uptake, increased carbon allocation to the pentose phosphate pathway (PPP) and a cellular redox shift towards a more reduced state-all indicators of a more anabolic programme to support their enhanced functionality. Thus, metabolic conditioning could be used to promote efficiency of T-cell products for adoptive cellular therapy.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Animais , Carbono/metabolismo , Linhagem Celular , Citocinas/biossíntese , Glucose/deficiência , Glucose/farmacologia , Memória Imunológica , Ativação Linfocitária , Linfoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Oxirredução , Via de Pentose Fosfato , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Metab ; 31(3): 441-442, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130876

RESUMO

Engulfment of dying cells by phagocytes is essential to maintain tissue function and promote injury resolution and repair. This process, termed efferocytosis, requires persistent corpse engulfment and remains a poorly understood mechanism. Here, we preview findings from Yurdagul et al. (2020) that detail how continual efferocytosis is supported by metabolites derived from the dying cell itself.


Assuntos
Apetite , Fome , Apoptose , Arginina , Macrófagos , Fagocitose
13.
Cell Metab ; 31(2): 422-437.e5, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31883840

RESUMO

Regulatory T cells (Tregs) subdue immune responses. Central to Treg activation are changes in lipid metabolism that support their survival and function. Fatty acid binding proteins (FABPs) are a family of lipid chaperones required to facilitate uptake and intracellular lipid trafficking. One family member, FABP5, is expressed in T cells, but its function remains unclear. We show that in Tregs, genetic or pharmacologic inhibition of FABP5 function causes mitochondrial changes underscored by decreased OXPHOS, impaired lipid metabolism, and loss of cristae structure. FABP5 inhibition in Tregs triggers mtDNA release and consequent cGAS-STING-dependent type I IFN signaling, which induces heightened production of the regulatory cytokine IL-10 and promotes Treg suppressive activity. We find evidence of this pathway, along with correlative mitochondrial changes in tumor infiltrating Tregs, which may underlie enhanced immunosuppression in the tumor microenvironment. Together, our data reveal that FABP5 is a gatekeeper of mitochondrial integrity that modulates Treg function.


Assuntos
Proteínas de Ligação a Ácido Graxo/fisiologia , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Linhagem Celular Tumoral , DNA Mitocondrial/metabolismo , Humanos , Interferon Tipo I/metabolismo , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/patologia
14.
Cell Metab ; 30(2): 352-363.e8, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130465

RESUMO

How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.


Assuntos
Macrófagos/metabolismo , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Células Cultivadas , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteômica
15.
Nat Immunol ; 20(4): 420-432, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858618

RESUMO

The adoption of Warburg metabolism is critical for the activation of macrophages in response to lipopolysaccharide. Macrophages stimulated with lipopolysaccharide increase their expression of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in NAD+ salvage, and loss of NAMPT activity alters their inflammatory potential. However, the events that lead to the cells' becoming dependent on NAD+ salvage remain poorly defined. We found that depletion of NAD+ and increased expression of NAMPT occurred rapidly after inflammatory activation and coincided with DNA damage caused by reactive oxygen species (ROS). ROS produced by complex III of the mitochondrial electron-transport chain were required for macrophage activation. DNA damage was associated with activation of poly(ADP-ribose) polymerase, which led to consumption of NAD+. In this setting, increased NAMPT expression allowed the maintenance of NAD+ pools sufficient for glyceraldehyde-3-phosphate dehydrogenase activity and Warburg metabolism. Our findings provide an integrated explanation for the dependence of inflammatory macrophages on the NAD+ salvage pathway.


Assuntos
Dano ao DNA , Macrófagos/metabolismo , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acrilamidas/farmacologia , Animais , Células Cultivadas , Citocinas/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas/farmacologia
16.
Cell Metab ; 26(1): 131-141, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683280

RESUMO

Immune cell function and fate are intimately linked to engagement of metabolic pathways. The contribution of core metabolic pathways to immune cell bioenergetics has been vigorously investigated in recent years. However, precisely how other peripheral metabolic pathways support immune cells beyond energy generation is less well understood. Here we survey the literature and highlight recent advances in our understanding of several ancillary metabolic pathways and how they support processes beyond ATP production and ultimately contribute to protective immunity.


Assuntos
Imunidade Celular , Redes e Vias Metabólicas , Animais , Colesterol/imunologia , Colesterol/metabolismo , Hexosaminas/imunologia , Hexosaminas/metabolismo , Humanos , Poliaminas/imunologia , Poliaminas/metabolismo
17.
Trends Mol Med ; 22(8): 671-686, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27395769

RESUMO

With extension of the average lifespan, aging has become a heavy burden in society. Immune senescence is a key risk factor for many age-related diseases such as cancer and increased infections in the elderly, and hence has elicited much attention in recent years. As our body's guardian, the immune system maintains systemic health through removal of pathogens and damage. Autophagy is an important cellular 'clearance' process by which a cell internally delivers damaged organelles and macromolecules to lysosomes for degradation. Here, we discuss the most current knowledge of how impaired autophagy can lead to cellular and immune senescence. We also provide an overview, with examples, of the clinical potential of exploiting autophagy to delay immune senescence and/or rejuvenate immunity to treat various age-related diseases.


Assuntos
Imunidade Adaptativa , Envelhecimento , Autofagia , Animais , Senescência Celular , Humanos , Imunidade Inata
18.
J Innate Immun ; 7(4): 375-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25764971

RESUMO

Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as 'inflamm-aging'. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased - a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging.


Assuntos
Envelhecimento/imunologia , Autofagia/imunologia , Macrófagos/imunologia , Proteínas Associadas aos Microtúbulos/imunologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Glicólise/genética , Glicólise/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
19.
Proc Natl Acad Sci U S A ; 111(52): E5678-87, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512546

RESUMO

Autophagy is an evolutionarily conserved cellular homeostatic pathway essential for development, immunity, and cell death. Although autophagy modulates MHC antigen presentation, it remains unclear whether autophagy defects impact on CD1d lipid loading and presentation to invariant natural killer T (iNKT) cells and on iNKT cell differentiation in the thymus. Furthermore, it remains unclear whether iNKT and conventional T cells have similar autophagy requirements for differentiation, survival, and/or activation. We report that, in mice with a conditional deletion of the essential autophagy gene Atg7 in the T-cell compartment (CD4 Cre-Atg7(-/-)), thymic iNKT cell development--unlike conventional T-cell development--is blocked at an early stage and mature iNKT cells are absent in peripheral lymphoid organs. The defect is not due to altered loading of intracellular iNKT cell agonists; rather, it is T-cell-intrinsic, resulting in enhanced susceptibility of iNKT cells to apoptosis. We show that autophagy increases during iNKT cell thymic differentiation and that it developmentally regulates mitochondrial content through mitophagy in the thymus of mice and humans. Autophagy defects result in the intracellular accumulation of mitochondrial superoxide species and subsequent apoptotic cell death. Although autophagy-deficient conventional T cells develop normally, they show impaired peripheral survival, particularly memory CD8(+) T cells. Because iNKT cells, unlike conventional T cells, differentiate into memory cells while in the thymus, our results highlight a unique autophagy-dependent metabolic regulation of adaptive and innate T cells, which is required for transition to a quiescent state after population expansion.


Assuntos
Autofagia/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Células T Matadoras Naturais/imunologia , Timo/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Células T Matadoras Naturais/citologia , Superóxidos/imunologia , Timo/citologia
20.
Elife ; 32014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25385531

RESUMO

During infection, CD8(+) T cells initially expand then contract, leaving a small memory pool providing long lasting immunity. While it has been described that CD8(+) T cell memory formation becomes defective in old age, the cellular mechanism is largely unknown. Autophagy is a major cellular lysosomal degradation pathway of bulk material, and levels are known to fall with age. In this study, we describe a novel role for autophagy in CD8(+) T cell memory formation. Mice lacking the autophagy gene Atg7 in T cells failed to establish CD8(+) T cell memory to influenza and MCMV infection. Interestingly, autophagy levels were diminished in CD8(+) T cells from aged mice. We could rejuvenate CD8(+) T cell responses in elderly mice in an autophagy dependent manner using the compound spermidine. This study reveals a cell intrinsic explanation for poor CD8(+) T cell memory in the elderly and potentially offers novel immune modulators to improve aged immunity.


Assuntos
Autofagia/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Animais , Apoptose/imunologia , Proteína 7 Relacionada à Autofagia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Proliferação de Células , Sobrevivência Celular , Epitopos/imunologia , Transportador de Glucose Tipo 1/metabolismo , Imunização Secundária , Contagem de Linfócitos , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...